“DAC device tree configuration”的版本间的差异
第47行: | 第47行: | ||
=== DT configuration example === | === DT configuration example === | ||
− | + | 下面的示例显示如何配置DAC1和DAC2通道: | |
− | * | + | * PA4和PA5引脚均配置为模拟引脚 (更多信息,请参见 [[Pinctrl device tree configuration]]) |
− | * VREFBUF<ref name="VREFBUF internal peripheral"/> | + | * VREFBUF<ref name="VREFBUF internal peripheral"/> 用作参考电压 |
dac_ch1_pins_a: dac-ch1 { | dac_ch1_pins_a: dac-ch1 { |
2020年11月9日 (一) 15:24的版本
目录
Purpose
本文旨在说明将数模转换器(DAC)[1] 分配给 Linux® 操作系统时如何进行配置, 尤其是:
- 如何配置和启用DACperipheral
- 如何配置板、DAC通道、基准电压调节器和引脚。
使用设备树机制执行配置[2].
DAC Linux driver使用它在 IIO framework中注册相关信息,例如IIO设备,通道和电压标度。
如果外围设备已分配给另一个执行上下文,请参阅 How to assign an internal peripheral to a runtime context 文章,以获取有关外围设备分配和配置的准则。
DT bindings documentation
带有所有必需或可选属性的“ STM32 DAC设备树绑定”[3] 协议。
DT configuration
该硬件描述是STM32和电路板设备树文件的组合。 有关分割设备树文件的说明,请参见 Device tree。
STM32CubeMX可用于生成板卡设备树。 有关更多详细信息,请参考How to configure the DT using STM32CubeMX 。
DT configuration (STM32 level)
DAC节点在stm32mp157c.dtsi中声明[4]:
- DT根节点('dac')描述DAC硬件模块参数,例如寄存器区域和时钟。
- DT子节点('dac1'和'dac2')独立描述DAC通道。
dac: dac@address { compatible = "st,stm32h7-dac-core"; ... /* common resources in 'dac' root node. */ dac1: dac@1 { compatible = "st,stm32-dac"; reg = <1>; /* DAC identifier (e.g. 1 for DAC1) */ ... /* private resources in 'dac1' child node. */ }; dac2: dac@2 { compatible = "st,stm32-dac"; reg = <2>; /* DAC identifier (e.g. 2 for DAC2) */ ... /* private resources in 'dac2' child node. */ }; };
该设备树部分与STM32微处理器有关。 它应该保持原样,而不要由最终用户修改。 |
DT configuration (board level)
请按照以下顺序在板上配置和启用DAC:
- 通过设置status =“ okay”启用名为'dac'的DT根节点。
- 通过 pinctrl至pinctrl-0和pinctrl-names配置正在使用的引脚。
- 通过设置vref-supply = <&your_regulator>来配置模拟参考电压稳压器[5] 。
- 通过设置status =“ okay”为启用的'dac1'和/或'dac2'通道启用DT子节点 。
DAC可以使用内部VREFBUF[6] 或连接到VREF +引脚的任何其他外部稳压器[5] |
.
DT configuration example
下面的示例显示如何配置DAC1和DAC2通道:
- PA4和PA5引脚均配置为模拟引脚 (更多信息,请参见 Pinctrl device tree configuration)
- VREFBUF[6] 用作参考电压
dac_ch1_pins_a: dac-ch1 { pins { pinmux = <STM32_PINMUX('A', 4, ANALOG)>; /* configure 'PA4' as ANALOG */ }; }; dac_ch2_pins_a: dac-ch2 { pins { pinmux = <STM32_PINMUX('A', 5, ANALOG)>; /* configure 'PA5' as ANALOG */ }; };
&dac { pinctrl-names = "default"; pinctrl-0 = <&dac_ch1_pins_a &dac_ch2_pins_a>; /* Use PA4 and PA5 pin as ANALOG */ vref-supply = <&vrefbuf>; /* Example to use VREFBUF (It needs to be enabled as well) */ status = "okay"; /* Enable the DAC block */ dac1: dac@1 { status = "okay"; /* Enable DAC1 */ }; dac2: dac@2 { status = "okay"; /* Enable DAC2 */ }; };
How to configure the DT using STM32CubeMX
The STM32CubeMX tool can be used to configure the STM32MPU device and get the corresponding platform configuration device tree files.
The STM32CubeMX may not support all the properties described in the above DT bindings documentation paragraph. If so, the tool inserts user sections in the generated device tree. These sections can then be edited to add some properties and they are preserved from one generation to another. Refer to STM32CubeMX user manual for further information.
References
For additional information, refer to the following links:
- ↑ DAC internal peripheral
- ↑ Device tree
- ↑ Documentation/devicetree/bindings/iio/dac/st,stm32-dac.txt | |}} Documentation/devicetree/bindings/iio/dac/st,stm32-dac.txt , STM32 DAC device tree bindings
- ↑ arch/arm/boot/dts/stm32mp157c.dtsi | |}} STM32MP157C device tree file
- ↑ 5.05.1 Regulator overview
- ↑ 6.06.1 VREFBUF internal peripheral
<securetransclude src="ProtectedTemplate:ArticleBasedOnModel" params="Peripheral or framework device tree configuration model"></securetransclude> <securetransclude src="ProtectedTemplate:PublicationRequestId" params="8780 | 2018-09-14 | AnneJ"></securetransclude>